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Institute of Physics, Polish Academy of Sciencies, AI Lotnikdw 32/46, 02-668 Warsaw, 
Poland 

Received 5 March 1982 

Abstract. A representation of the real part of the Heisenberg-Euler Lagrangian density 
in quantum electrodynamics by means of special functions is obtained. It is shown that 
this representation is very convenient for numerical calculations of the real part of the 
Heisenberg-Euler Lagrangian density. It is indicated that this representation is of use for 
calculations of a quantum electrodynamical field energy density in the absence of real 
charges and for calculations of polarisation and magnetisation of the vacuum. 

1. Introduction 

In quantum electrodynamics (QED) the effective one-loop Lagrangian (Heisenberg 
and Euler 1936, Weisskopf 1936, Schwinger 195 l), usually called the Heisenberg- 
Euler Lagrangian, describes the effective nonlinear interaction of the electromagnetic 
fields due to a single closed electron loop. The Heisenberg-Euler Lagrangian enables 
us to describe quantitatively such electromagnetic processes as the propagation of a 
photon in a magnetised vacuum, photon splitting in the presence of a strong magnetic 
field (Biatynicka-Birula and Biatynicki-Birula 1970, Adler et a1 1970, Adler 1971, 
Stoneham 1979) and scattering of light by light in a vacuum (Euler 1936). 

When the external field is pure magnetic, the Heisenberg-Euler Lagrangian density 
was expressed by means of the generalised gamma function and elementary functions 
(Dittrich et a1 1979). Numerical values of the Lagrangian density were given by 
Valluri et a1 (1982). A similar representation in a pure electric field case was also 
found (Dittrich et a1 1979, Valluri et a1 1982). 

The main purpose of this paper is to generalise the results mentioned above in 
the case when both electric and magnetic fields coexist. The real part of the Heisen- 
berg-Euler Lagrangian will be expressed by means of the following mathematical 
functions: the cosine integral Ci(u), the sine integral Si(u), the exponential integral 
Ei(u) and elementary functions. 

We shall show that the representation obtained is very convenient to calculate the 
numerical values of the real part of the effective Lagrangian density. 

The paper is organised as follows: in 0 2 we shall present our representation of 
the real part of the effective Heisenberg-Euler Lagrangian density. The main result 
of this paper is given by equation (2.11). In 0 3 we shall indicate possible physical 
applications of our representation. 
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2. Representation of the Lagrangian density 

Heisenberg and Euler (1 936), Weisskopf (1 936) and Schwinger (1 95 1) obtained the 
following form of the effective Lagrangian density L&(E, B )  

1 du Re[cosh(eu W)] 
871. ( Im[cosh(eu W)] -'&(E, B )  = 9 ' 0 - 7  7 exp(-m'u) ( e u ) 2 8  - 1 +l(eu)ZY) (2.1) 

where 

w = J~ ( -Y  + iB) (2.2) 
e and m denote the charge and the mass of the electron (we adopt the usual convention 
ti = c = 1). The field invariants Y and 8 are defined by 

Y = $(E2 - BZ) (2.3) 

B = E * B  (2.4) 
where B and E denote the magnetic induction and electric field respectively. 

From the equation (Weisskopf 1936) 

Re[cosh( eu W)] 
(e')2pIm[cosh(euW)] - 1 + $(eu)'Y 

where 

one can show that the integrand of the expression given by the right-hand side of 
equation (2.1) has poles at the points 

krr k = 1,2,  . . , e [ Y +  (Y2+ 99)1/2]1'2 u k  = 

The integration in equation (2.1) is carried out over the contour C bypassing the 
poles as shown in figure 1. 

It is obvious that the right-hand si& of equation (2.1) is not convenient for 
numerical calculations. To overcome this difficulty we transform the right-hand side 
of equation (2.5) (compare Claudson et a1 1980) 

x'y'~~coth(2u) cot(jk)- 1 - f ( x ' " y ' ) ~ ~  

+the expression obtained from the first component by the replacement 
rule 
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Figure 1. The curve of the integration C of the expression given by the right-hand side 
of equation (2.1). The curve C bypasses the points 

The symbol U denotes the complex variable of the integration. Re U denotes its real part 
and Im U is its imaginary part. E denotes the small positive parameter. To calculate the 
value of the integral given by the right-hand side of equation (2.1) the limit E + O  should 
be taken. 

Next we insert equation (2.8) into equation (2.1) and apply the integral formulas 
(Gradshteyn and Rhyzhik 1980) 

m 

dt = -Ci(p) cos p - s i b )  sin p 

for 

p = k.rrm2/X- (k = 1 , 2 , .  . .) 
and 

df-exp(E Ei(-k) -exp(-C;) Ei(fi) 4p Iom f e;!!--?) (2.10) 

for 

= k.rrm2/f (k = 1 , 2 , .  . .) 
(the symbol 4p in equation (2.10 denotes the principal value of the integral). 

Lagrangian 
Finally we arrive at the following expression for the real part of the effective 

where 

a k  = k-' coth(ykrr/x)[Ci(k/x) cos(k/x) + Si(k/x) sin(k/x)] 

d k  = k-' coth(xkw/y)[exp(k/y) Ei(-k/y) -exp(-k/y) Ei(k/y)] 

(2.11) 

(2.12) 

(2.13) 
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and dimensionless quantities x and y are defined by 

x = x'/rrm2 

y = f/rrm2 

(2.14) 

(2.15) 

(Y denotes the fine structure constant. (The symbol B in equation (2.10) denotes the 
principal value of the integral.) 

The cosine integral Ci(u) is defined by 
W cos t 

Ci(u)=-[  -ddt for u>O 
u t  

(2.16) 

(Korn and Korn 1961); the sine integral Si(u) is given by 

(2.17) 

The exponential integral Ei(u) is defined by 

m 
- I, expO dt 

- lim 

t 
m 

exp(-t) d t + I e  -dt) exP (- t 1 
t 

Ei(u) = 

for U < O  

for U > 0. 
(2.18) 

We adopt the notation of Korn and Korn (1961) to denote the special functions 
mentioned above. The numerical values of these functions were given by Etherington 
(1958), Harris (1957), Miller and Hurst (1958), Korn and Korn (1961) and Abramowitz 
and Stegun (1970). 

Equation (2.1 1) presents the main result of this paper. To the best of our knowledge 
the formula (2.1 1) is unknown in literature. However, this equation can be obtained 
from somewhat similar results of Claudson eta1 (1980) if one specifies a general gauge 
group to the QED case and applies our equations (2.9) and (2.10). 

One can show that for an arbitrary number A satisfying the condition 

O < A < 1  

the sequence ak + dk has the following behaviour for large k 

lUk+dk/<G/k2-*  (2.19) 

where the constant G does not depend on k. This behaviour guarantees convergence 
of the series X?=l ak +dk. 

3. Applications of equation (2.11) 

In a similar way one can calculate the QED energy density X of the electromagnetic 
field in the absence of real charges. The energy density %' of such a system is given 
by the relation 

(3.1) %' = E *D - Re-YdE, B )  
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where the electric displacement D is defined by the relation 

(3.2) 
a Re Z e d &  B) a Re -%a(E, B) a Re 9 e f i E  B) B. 

a s  E +  - - 
aE ay D =  

Equations (3.1) and (3.2) give 

Equation (3.3) can be rewritten in the form 

- 9 - (Re -5fe8(E, B) - 9’). (3.4) 
The first component on the right-hand side of equation (3.4) represents the Maxwellian 
energy density of the electromagnetic field. The rest is due to the interaction of the 
field with vacuum fluctuations. 

The derivatives 

a(Re Zeff(E, B) - 9 ’ / 4 ~ )  
ay 

a(Re &(E, B) - 97’471‘) 
a s  and 

can be easily expressed in terms of the sine integral, the cosine integral and the 
exponential integral by differentiating equation (2.11) with respect to the field 
invariants Y and 8. Therefore the energy density 2 can be represented by means 
of these special functions as well. 

By a similar method we are able to calculate the polarisation density P and the 
magnetisation density M created by the external electromagnetic field 

P=D-E (3.5) 

U = B - H  (3.6) 
where the magnetic field H is defined by 

= -a  Re YedE, B) a Re %.#, B) a Re -5fe@, WE. 
a s  B- - - 

aB aY 

Numerical values of the QLD energy density 2, the polarisation density P and the 
magnetisation density U we1 be given in a subsequent paper. 
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